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surfaces was higher than that of the glossy ones, and its
sensitivity to the erosive action appeared to vary from one
sample to another.

The c plane surface is also sensitive to oxidation, but less
so than the a plane surface. This surface becomes more
glossy with increased temperature and exposure time. How-
ever, the highest emittance measured corresponds to the
highest temperature and the most glossy surface, indicating
an influence of temperature that more than compensates for
surface roughness effects. Similar observations are made
in Ref. 11 (p. 471). A related observation made in Ref. 13
is that surfaces etched by heating in either vacuum or argon
at temperatures above 2900°K had their luster restored by
heating in oxygen. The work reported in the latter reference
demonstrates the sensitivity of pyrolytic graphite emittance
to surface conditions and environment of heating.

Concluding Remarks
Spectral hemispherical emittance and reflectance data

have been obtained on a variety of ablation chars, carbon,
and graphite at wavelengths of 0.4-3.2 /xm and temperatures
of 2200-3450° K. The spectral and integrated emittance
data on carbon and polycrystalline graphite are in close
agreement with comparable spectral and total emittance
data in the literature. Total emittance data in the litera-
ture on ablation chars of the types evaluated are 10-20%
lower than the integrated emittances. However, the litera-
ture data were obtained by methods based on assumed gray-
body behavior of the materials, and when corrections based
on the spectral definition obtained in the current study are
made, the corrected values are only 2-10% lower than the
integrated values.
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Uncertainties of Calculated
Characteristics of a Transpiration-

Cooled Arc
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Nomenclature
= specific heat at constant pressure
= electric field strength
= enthalpy
= mass average enthalpy
= electric current
= thermal conductivity
= mass injection rate through porous wall
= pressure
= heat loss by radiation
= coordinates
= temperature
= velocity
= mass flow within constrictor in z direction

n = viscosity
MO = susceptibility of vacuum
£ = bulk viscosity
p = gas density
a- = electrical conductivity

Subscripts
0 = on axis
p = in plenum chamber around outside wall
w = at constrictor wall

FOR the generation of a high-temperature, high-density
plasma, transpiration-cooling of the constrictor tube in

which the electric arc is operated has been suggested and cor-
responding experiments in this laboratory are already in
progress.1 >2 From theoretical considerations, it seems possible
to achieve higher axis temperatures with such an arc than with
the conventional water-cooled cascaded arc.

In this work, the uncertainty of theoretical predictions,
which suffer mainly from uncertainties of published values of
the plasma transport properties, will be analyzed. The re-
sults of this study may be useful for other investigations as
well which rely on the knowledge of the thermodynamic and
transport properties of high-temperature plasmas.

Recently, Anderson described a method for the calculation
of the characteristics of a transpiration-cooled arc3 based on
some earlier work of Anderson and Eckert.4 In connection
with analyzing the performance capability of a transpiration-
cooled constricted arc heater, Anderson and Eckert used this
method successfully.5 Assuming a thermally and hydro-
dynamically fully developed laminar flow, the continuity,
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momentum, and energy equations are
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with the_boundary conditions

vr(0) = 0, t;r(rw) = — m/p

(0) = 0, v2(r^) = 0, (d»,/dr) (0) = 0

= m(hw - hp)

The derivation and the numerical solution of these equa-
tions are discussed in Ref. 3. In order to obtain reliable
quantitative results, the transport and thermodynamic prop-
erties of the gases, which are used for cooling, have to be well
known. Unfortunately, the values collected in the literature,
especially those of the transport properties and the volumetric
radiation, differ very much. In Fig. 1 the temperature de-
pendence of the thermal conductivity of argon is shown as re-
ported by four different authors.6"8'12 The volumetric radia-
tion emitted by an argon plasma as a function of the tempera-
ture is plotted in Fig. 2 with reference to two different au-
thors.7-9 The deviations between the values of the individual
authors at a given temperature are very large. For example,
the difference between the thermal conductivities at 13, 500° K
reported in Refs. 6 and 7 is nearly an order of magnitude.
An examination of the transport and radiation properties for
nitrogen reported in the literature revealed a disagreement in
the same order of magnitude. Some of the disagreement in
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Fig. 1 Thermal conductivity of an atmospheric argon
plasma as a function of temperature.
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Fig. 2 Volumetric radiation of an atmospheric argon
plasma as a function of temperature.

the thermal conductivity and radiation properties is appar-
ently caused by the fact that some are derived from experi-
mental data on optically thick columns and others from
kinetic formulations. It is, however, not clear today which
of the properties should be used in the analysis.

The effect of these uncertainties of the plasma transport
properties on the results of calculated arc characteristics and
temperature profiles is demonstrated in the following graphs
and tables. In Fig. 3, three different radial temperature
distributions for a transpiration-cooled argon arc are shown.
The comparison in each one of these and those shown in Fig. 4
is made for a fixed peak temperature and a fixed wall tempera-
ture. The thermodynamic and transport properties used in
the numerical solutions have been obtained as follows. Case
A: p, cp, h from Ref. 10; k, a, ju from Ref. 6; Pr = 0. Case
B: p, cp, h from Ref. 10; k, a from Ref. 8; ju from Ref. 6;
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Fig. 3 Influence of uncertainties in the thermal con-
ductivities on the temperature profiles of a transpiration-

cooled arc.
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Table 2 Influence of the volumetric radiation on
arc characteristics
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Fig. 4 Influence of uncertainties of the volumetric radia-
i the temperature profiles of a transpiration-cooled

Q1**»

tion on

Pr from Ref. 9. Case C: p, cp, h from Ref. 10; k, a, Pr from
Ref. 7; M from Ref. 6.

For the low-temperature range (T < 3,000°K), the gas
properties from Ref. 11 have been used. Since the peak
temperature is relatively low, the influence of the volumetric
radiation is almost negligible in this range. In addition, the
values of the electrical conductivity used for the calculations
are in much better agreement from author to author than
those of the thermal conductivity. Therefore, the spread of
the different calculated temperature profiles is caused mainly
by uncertainties of the thermal conductivities. The effect of
this uncertainty on the arc characteristics is demonstrated in
Table 1, which, contains calculated values of the electric field
strength, the electric current, the power input, the mass in-
jection rate through the porous wall, and the mass average
enthalpy for cases A, B, and C.

The influence of the not-well-known volumetric radiation
on the arc characteristics and the temperature profiles is evi-
dent from Fig. 4 and Table 2. The calculations are based on
the following gas properties. Case D: p, cp, h from Ref. 10;
k, (7, M from Ref. 6; Pr = 0. Case E: p, cp, h from Ref. 10;
k, cr, M from Ref. 6; Pr from Ref. 9. Case F: p, cp, h from
Ref. 10; k, <r, M from Ref. 6; Pr from Ref. 7.

In this case the peak temperature reached the value of
13,600°K and the temperature at the wall was 1,000°K.
Neglecting the volumetric radiation entirely or using the
values given in Ref. 7 leads to deviations in the temperature
profiles of up to 5000°K. The disagreement of the arc
characteristics is shown in Table 2.

From these examples which have been taken from a large
number of calculations, it is obvious that the uncertainties in
the plasma transport properties cause large uncertainties of
the temperature distributions and arc characteristics of a
transpiration-cooled arc. Because of this problem, a quanti-

Table 1 Influence of the thermal conductivity on
arc characteristics

E, /, El, m, H,
Case v/cm amp kw/cm g/cm2 sec kjoules/kg

A
B
C

4.25
5.37
5.39

36.5
53.0
59.8

0.155
0.285
0.322

0.01841
0.02669
0.02854

2687
3400
3595

Case v/cm amp
El, m, H,

kw/cm g/cm2 sec kjoules/kg

D
E
F

10.64
13.12
15.13

42.6
41.2
37.3

0.453
0.54
0.57

0.0531
0.0821
0.1009

5431
3835
3231

tative comparison of analytical and experimental results is
presently nearly impossible. Comparisons can be under-
taken only to demonstrate agreement of basic trends.
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Nomenc! ature
A = reference area for drag coefficient
CD = drag coefficient
D = CD^PVZA = aerodynamic drag force
g = acceleration of gravity
m — pro jectile_ mass
SD = 2in/CDpA = aerodynamic penetration
I = time
v = projectile velocity
y = horizontal (downrange) coordinate
z = vertical (altitude) coordinate
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